# **Review Article**

# Zinc as an essential element for normal immune reactions and as a therapeutic agent for autoimmune diseases

Inas K. Sharquie, Khalifa E. Sharquie\*, Wasan W. Al-bassam\*\*

Department of Microbiology & Immunology, College of Medicine, University of Baghdad, Baghdad, Iraq.

- \* Department of Dermatology, College of Medicine, University of Baghdad, Baghdad, Iraq.
- \*\* Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq.

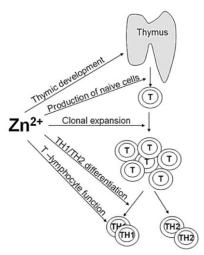
#### **Abstract**

Zinc is an essential element that is involved in more than 300 enzymes metabolism. Also, zinc is engaged in the function of many immunological processes as zinc deficiency leads to a reduction in T-cells, altered T-cell differentiation, and suppression of their functions. Zinc deficiency causes impairment of the immune system, increased susceptibility to infections and an escalation to chronic inflammation if untreated. In addition, there are many studies that had been carried out and showed that zinc is an important therapeutic agent in the treatment of many cuteness and systemic disease either in a form of topical zinc cream or through oral zinc sulfates like in therapy of alopecia areata, vitiligo, psoriasis and systemic sclerosis. So the aim of this review is to illustrate and highlight the role of zinc in health and disease.

#### Key words

Zinc, zinc sulfate, immune reactions, autoimmune diseases.

#### Introduction


Since the severe consequences of zinc deficiency were first described by Prasad *et al.* in the 1960s, the importance of zinc in biological processes has been identified. Zinc is an essential component of more than 300 enzymes and over 2000 transcription factors. It is involved in processes such as cell signalling, redox regulation, cell proliferation, differentiation, survival and immune response. In the immune system, zinc effects the generation of T-lymphocytes at different stages, as shown in **Figure 1**.

### Address for correspondence

Dr. Inas K. Sharquie
Department of Microbiology & Immunology,
College of Medicine, University of Baghdad,
Baghdad, Iraq. Medical Collection Office,
P.O. Box 61023 Postal Code 12114, Baghdad,
Iraq. Tel: 009647822241444
Email: iksharquie@yahoo.com

Thus, zinc deficiency leads to a reduction in T-cells, altered T-cell differentiation and suppression of their functions. In autoimmunity, the balance between two particular subsets of T-cells-regulatory T-cells (Treg) and T helper type 17 cells (Th17) is disrupted so that Th17 cells are up regulated. Treg cells are responsible for down regulating inflammation to maintain immune homeostasis. Conversely, Th17 cells promote inflammation by inducing many proinflammatory cytokines and activating many cell types, notably those usually involved in fighting infections.<sup>6</sup>

In short, zinc deficiency causes impairment of the immune system, increased susceptibility to infections and an escalation to chronic inflammation if untreated.<sup>7</sup> Unlike iron, there is no storage system for zinc in the body. Hence, a continuous external supply is necessary to carry out the crucial functions in the body.<sup>8-9</sup>



**Figure 1** Zinc influences the different levels of t-lymphocyte generation. (adapted from reference 5). zinc affects the development of thymus, production of naïve cells, clonal expansion of t-cells, differentiation of t-cells into th1 or th2 cells and function of the t-lymphocytes.

Zinc supplementation has been used to treat bacterial, viral and parasitic infections and autoimmune diseases in various small-scale clinical studies. <sup>10-20</sup> In this review, the effectiveness of oral or topical ZnSO<sub>4</sub> treatment for skin conditions caused by autoimmune reactions are discussed.

# Use of zinc sulfate in diseases with autoimmune reactions

Various forms of zinc, whether elemental or as salts, have been used as therapeutic agents for centuries.<sup>9</sup>

#### Vitiligo

Vitiligo is a common depigmenting skin and hair disorder with an incident rate of 0.1-2% regardless of age, race, ethnicity or skin colour.<sup>21-25</sup>

Yaghoobi *et al.* conducted a randomised clinical trial to evaluate the efficacy of combinatory therapy using oral zinc sulfate and topical corticosteroid.<sup>18</sup> Topical corticosteroid cream

was given to two groups, the first containing 16 people and the second with 19 people. The second group also received two capsules of zinc sulfate (each containing 220 mg) twice daily for teenagers and adults or a dose of 10 mg/kg as a capsule or syrup for children. In the second group, the serum zinc level was monitored at 1 and 3 months after the treatment. The largest patch of depigmentation was used as the target lesion for all participants and its size was measured after 1, 3 and 4 months.

In both groups, there was no response to treatment observed in the first month. The final mean responses from the first and second groups were 21.43% ( $\pm 11.6\%$ ) and 24.7% ( $\pm 11.0\%$ ), respectively, which were not statistically significant. Therefore, zinc sulfate had no benefit when use in conjunction with topical corticosteroid treatment. Moreover, the serum zinc level in most participants was within the normal range, which was in agreement with the findings by Arora *et al.*<sup>26</sup>

#### **Psoriasis**

**Psoriasis** is a chronic inflammatory autoimmune-mediated disorder of the skin affecting nearly 2% of the general population with a high relapsing rate. 27-28 A further complication manifests in the inflammation of joints. Currently, available treatments include topical corticosteroids and tars, phototherapy, systemic treatment of methotrexate and retinoids and biologics such as adalimumab infliximab. 19

Sadeghian *et al.* conducted a randomised, double-blind clinical trial of 60 participants to find the effectiveness of topical zinc pyrithione. For Group A (30 people) received topical and emollient-based 0.25% zinc pyrithione cream to be applied twice daily. Group B (control, 30 people) received an

emollient cream without zinc. The treatment outcome was measured by using PASI (a measurement tool for psoriasis), determining the severity of induration, erythema and scaling. The percentage reduction of mean PASI scores in groups A and B were 70.5% and 9.3%, respectively. Also, five people from group A were lesion-free at the end of the study (cf. no participants from group B were lesion-free). No side effects were observed from the treatment. Also, Sharquie et al. conducted a placebocontrolled study using topical 5% and 10% zinc sulfate cream for topical therapy of psoriasis vulgaris and the results were statistically significantly effective when compared with emollient cream.29

#### Lichen planus

Lichen planus is a chronic inflammatory disease involving the skin, mucous membrane, scalp and nails; it affects 0.5-2.6% of the general population.<sup>30</sup> Factors such as stress, systemic medications, genetics, immunity and hypersensitivity reactions, and viral infections contribute to the manifestation of lichen planus.<sup>31</sup>

Mehdipour *et al.* conducted a randomised, double-blind study to compare the efficacy of mouthwash with or without 0.2% zinc combined with fluocinolone in 20 patients with erosive lichen planus.<sup>20</sup> The duration of the trial was two months. Group A (10 patients) received a placebo mouthwash without zinc, and group B (10 patients) received the mouthwash with zinc three times a day. All participants used fluocinolone ointment twice a day. The treatment outcome was measured by (i) determination of the lesion size by using digital callipers and (ii) pain severity by using a visual analogue scale (VAS).<sup>32</sup>

Pain severity, irritation and lesion surface area

decreased in both groups. In particular, the decrease in pain and irritation in both groups was identical, which could be attributed to the effect of fluocinolone use. In contrast, a reduction in surface area in group B (using zinc mouthwash and fluocinolone ointment) was attributed to the effect of zinc.

#### Recurrent aphthous stomatitis (RAS)

Aphthous stomatitis is a painful oral ulcer characterised as a recurrent inflammatory process of the oral mucosa.<sup>33</sup> Sharquie et al. conducted a double-blind, placebo-controlled study to compare the therapeutic prophylactic effects of oral ZnSO<sub>4</sub> compared with dapsone for 12 weeks. 15 Of the 45 patients recruited, 15 patients were allocated for each group (A: ZnSO<sub>4</sub> treated; B: dapsone treated; and C: control). Group A was given 150 mg of ZnSO<sub>4</sub> twice daily and the Oral Clinical Manifestation Index (OCMI) and measurement of ulcer diameter were used for monitoring the therapeutic outcome of ZnSO<sub>4</sub>. In short, ZnSO<sub>4</sub> significant demonstrated superior and therapeutic and prophylactic effects for reducing the size of RAS in comparison to dapsone.

## Alopecia areata (AA)

AA is a disorder that affects hair follicles and sometimes the nails. 16 Complete or nearly complete hair loss can occur in one or more circular or oval nonscarring patches in the hair-bearing area. Numerous medications have been used for treating AA, such as topical, intralesional and systemic corticosteroids; however, they are limited by poor efficacy and toxicity. 34-36 Sharquie *et al.* 16 conducted a randomised, placebo-controlled, double-blind crossover trial using oral ZnSO<sub>4</sub> at a dose of 5 mg/kg/day (this daily dose was divided into three amounts). For the treated group (group A, 37 patients), ZnSO<sub>4</sub> was given for the first 3

months followed by a 3-month placebo treatment (vice versa for the placebo group (group B, 30 patients)). For group A, 22 patients (59.45%) had "complete hair regrowth". After switching to the placebo, hair growth was maintained in the patients who achieved "complete hair regrowth" in the first 3 months. On the contrary, only three patients (10%) achieved "complete hair regrowth" at the end of the third month for group B. After switching to ZnSO<sub>4</sub> treatment, there was a significant increase in the number of patients who had complete hair regrowth.

#### Behcet's disease (BD)

BD is a chronic relapsing disease characterised by orogenital ulcerations. In addition, the eyes, brain and joints are affected. Autoimmune reactions with vasculitis are well demonstrated in this disease.<sup>17</sup> Sharquie et al.<sup>17</sup> conducted a randomised, controlled, double-blind crossover trial of 30 patients to explore the effectiveness of treating BD with 100 mg of oral ZnSO<sub>4</sub> three times daily for 3 months followed by placebo treatment for a further 3 months (group A). The placebo-treated group was given a placebo for the first 3 months, then the same dose of ZnSO<sub>4</sub> was given for the following months (group B). At baseline, the serum zinc level was significantly lower in BD patients than in healthy individuals.

There was an inverse correlation between the clinical manifestation index (CMI) score and serum zinc level, that is, a decrease in CMI score with increasing serum zinc level in both groups. The erythrocyte sedimentation rate (ESR) also decreased after treatment with ZnSO<sub>4</sub> but increased when the patients were switched to the placebo.

#### Morphea

Morphea, also called localised scleroderma, is a

skin disease characterised by thickening of the dermis, subcutaneous tissue or even the underlying muscle due to excessive collagen deposition.<sup>37-38</sup> About half of the patients experience recurrence within 2-7 years from the onset of the disease.<sup>39</sup>

Brocard *et al.* conducted a study to investigate the efficacy of high-dose zinc gluconate for treating morphea.<sup>38</sup> All 17 patients, who had not previously responded well to dermocorticosteroids, received 60-90 mg of zinc metal daily (equivalent to 4-6 Rubozinc capsules) for 12 months. The response rate was 53%, including five partial and four complete remissions. Only two patients had gastric irritation, but there was no discontinuation due to the adverse effect of zinc gluconate.

Sharquie *et al.* investigated the efficacy of intralesional administration of hyaluronic acid in the treatment of patients with sclerosis and used a combination therapy of oral and topical corticosteroids plus oral zinc sulfate to stop the activity of morphea and to maintain remission.<sup>37</sup>

#### Systemic lupus erythematosus (SLE)

Chronic ulcers on the leg are commonly observed with various autoimmune diseases. In SLE, ulcers are usually acute, and healing occurs as the condition subsides. Wang *et al.* tested the efficacy of oral ZnSO<sub>4</sub> for two female patients who had not responded well to conventional treatments such as prednisolone. Both patients were given 750 mg of ZnSO<sub>4</sub> daily in divided doses, and their ulcers were successfully healed within 2 months. 40

#### Systemic sclerosis

The characteristics of systemic sclerosis are fibrosis and the thickening of various tissues in the skin and internal organs.<sup>41</sup> Zinc levels of

patients with scleroderma are low, especially in erythrocytes, platelets and granulocytes.42 Penicillamine treatment increases intestinal absorption and urinary excretion, and the serum level of zinc increases; however, zinc deficiency might also be promoted due to the complex interaction between zinc and penicillamine.<sup>43</sup> The toxicity of penicillamine is elevated, possibly due to the depletion of copper caused by zinc and penicillamine. Thus, long-term zinc supplementation (15-60 mg/day) should be combined with a copper supplement (1-4 mg/day). In addition, oral zinc sulfate has been used to treat systemic sclerosis through an uncontrolled, prolonged study aiming to stop the progression of the disease, thus inducing remission.37,44-45

#### Conclusion

Oral application of ZnSO<sub>4</sub> provides a versatile, cost-effective treatment, with minor side effects, for a range of dermatological conditions. In all the studies, the serum zinc level was initially low in the patients at the baseline, but it increased quickly with ZnSO<sub>4</sub> treatment. Interestingly, in crossover studies, as soon as the subjects were switched to the placebo, the serum zinc level decreased; however, it was maintained higher than the baseline, indicating prolonged effect of zinc treatment. The molecular mechanisms of zinc in the immune system are not fully understood to date. However, it is speculated that zinc acts as an antioxidant to remove reactive oxygen species (ROS) produced in inflammation, 46 exerts immunomodulatory effects on T-cells, 47-48 is involved in wound healing or directly works on infectious agents.49 It is still necessary to conduct longer and larger-scale trials to comprehensively determine the effectiveness of oral ZnSO<sub>4</sub> application to establish treatment guidelines or recommendations for therapy.9

#### References

- 1. Prasad AS, Miale A, Jr., Farid Z, Sandstead HH, Schulert AR. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypognadism. J Lab Clin Med. 1963:61:537-49.
- 2. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;**73(1)**:79-118.
- 3. Bibi Nitzan Y, Cohen AD. Zinc in skin pathology and care. J Dermatolog Treat. 2006;17(4):205-10.
- Sanna A, Firinu D, Zavattari P, Valera P. Status and Autoimmunity: Systematic Review and Meta-Analysis. Nutrients. 2018;10(1):68.
- 5. Fraker PJ, King LE. Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr. 2004;24:277-98.
- 6. Lee GR. The Balance of Th17 versus Treg Cells in Autoimmunity. Int J Mol Sci. 2018;19(3):730.
- 7. Foster M, Samman S. Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients. 2012;**4(7**):676-94.
- 8. Gammoh NZ, Rink L. Zinc in Infection and Inflammation. Nutrients. 2017;9(6):624.
- 9. Gupta M, Mahajan VK, Mehta KS, Chauhan PS. Zinc Therapy in Dermatology: A Review. Dermatol Res Pract. 2014;2014:709152.
  - https://doi.org/10.1155/2014/709152
- 10. Najim RA, Sharquie KE, Farjou IB. Zinc Sulphate in the Treatment of Cutaneous Leishmaniasis: an in Vitro and Animal Study. Memórias do Instituto Oswaldo Cruz. 1998;**93**:831-7.
  - http://www.scielo.br/scielo.php?script=sci a rttext&pid=S0074-
  - 02761998000600025&nrm=iso
- 11. Sharquie KE, Najim RA, Farjou IB, Al-Timimi DJ. Oral zinc sulphate in the treatment of acute cutaneous leishmaniasis. Clin Exp Dermatol. 2001;26(1):21-6.
- 12. Sharquie KE, Noaimi AA, Al-Salam WS. Treatment Acute Cutaneous of Leishmaniasis by Oral Zinc Sulfate and Oral Ketocanazole Singly and in Combination. J Cosmet Dermatol Sci Appl. 2016;**6(3)**:11. www.scirp.org/journal/paperinformation.asp x?paperid=67129

- Al-Gurairi FT, Al-Waiz M, Sharquie KE. Oral zinc sulphate in the treatment of recalcitrant viral warts: randomized placebocontrolled clinical trial. *Br J Dermatol*. 2002;**146(3)**:423-31. https://onlinelibrary.wiley.com/doi/abs/10.1 046/j.1365-2133.2002.04617.x
- 14. Mahajan BB, Dhawan M, Singh R. Herpes genitalis-Topical zinc sulfate: An alternative therapeutic and modality. *Indian J Sex Transm Dis AIDS*. 2013;34(1):32-4. https://pubmed.ncbi.nlm.nih.gov/23919052 https://www.ncbi.nlm.nih.gov/pmc/articles/P MC3730471/
- 15. Sharquie KE, Najim RA, Al-Hayani RK, Al-Nuaimy AA, Maroof DM. The therapeutic and prophylactic role of oral zinc sulfate in management of recurrent aphthous stomatitis (ras) in comparison with dapsone. *Saudi Med J.* 2008;**29**(**5**):734-8.
- 16. Sharquie KE, Noaimi AA, Shwail ER. Oral Zinc Sulphate in Treatment of Alopecia Areata (Double Blind; CrossOver Study). *J Clin Exp Dermatol Res.* 2012;**3(150)**: 1000150.
- 17. Sharquie KE, Najim RA, Al-Dori WS, Al-Hayani RK. Oral zinc sulfate in the treatment of Behcet's disease: a double blind cross-over study. *J Dermatol*. 2006;**33(8)**:541-6.
- 18. Yaghoobi R, Omidian M, Bagherani N. Original article title: "Comparison of therapeutic efficacy of topical corticosteroid and oral zinc sulfate-topical corticosteroid combination in the treatment of vitiligo patients: a clinical trial". *BMC Dermatol*. 2011;**11**(7).
- 19. Sadeghian G, Ziaei H, Nilforoushzadeh MA. Treatment of localized psoriasis with a topical formulation of zinc pyrithione. *Acta Dermatovenerol Alp Pannonica Adriat*. 2011;**20(4)**:187-90.
- 20. Mehdipour M, Taghavi Zenouz A, Bahramian A, Yazdani J, Pouralibaba F, Sadr K. Comparison of the Effect of Mouthwashes with and without Zinc and Fluocinolone on the Healing Process of Erosive Oral Lichen Planus. J Dent Res Dent Clin Dent Prospects. 2010;4(1):25-8. https://pubmed.ncbi.nlm.nih.gov/22991591 https://www.ncbi.nlm.nih.gov/pmc/articles/P MC3429954/
- 21. Wolff K, Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffell DJ. Fitzpatrick's Dermatology in General Medicine. Mac Graw Hill; 7 2007:616-21.

- 22. Lotti T, Gori A, Zanieri F, Colucci R, Moretti S. Vitiligo: new and emerging treatments. *Dermatol Ther*. 2008;**21**(2):110-7.
  - https://onlinelibrary.wiley.com/doi/abs/10.1 111/j.1529-8019.2008.00178.x
- 23. Moretti S, Amato L, Bellandi S, Fabbri P. Focus on Vitiligo: A Generalized Skin Disorder. *Eur J Inflamm*. 2006;**4**(1):21-30. https://doi.org/10.1177/1721727X06004001
- 24. Lebwohl MG, Heymann WR, Berth-Jones J, Coulson I. Treatment of Skin disease. Comprehensive Therapeutic Strategies. *Mosby Elsevier*; 2006:683-7.
- 25. Whitton ME, Ashcroft DM, González U. Therapeutic interventions for vitiligo: *J Am Acad Dermatol*. 2008;**59(4)**:713-7. doi: 10.1016/j.jaad.2008.06.023.
- 26. Arora PN, Dhillon KS, Rajan SR, Sayal SK, Das AL. Serum Zinc Levels in Cutaneous Disorders. *Med J Armed Forces India*. 2002;58(4):304-6. https://www.sciencedirect.com/science/article/pii/S0377123702800831
- 27. McGrath J, Murphy GM. The control of seborrhoeic dermatitis and dandruff by antipityrosporal drugs. *Drugs*. 1991;**41(2)**:178-84.
- 28. Crutchfield CE, 3rd, Lewis EJ, Zelickson BD. The highly effective use of topical zinc pyrithione in the treatment of psoriasis: a case report. *Dermatol Online J.* 1997;**3(1)**:3.
- 29. Sharquie KE, Noaimi AA, Auda AGR, Al-Janabi WK. Topical Therapy of Psoriasis Using Zinc Sulphate Cream 5% and 10%. *J Dermatol Venereol*. 2014:**3**:57-62.
- 30. Ismail SB, Kumar SK, Zain RB. Oral lichen planus and lichenoid reactions: etiopathogenesis, diagnosis, management and malignant transformation. *J Oral Sci.* 2007;**49(2)**:89-106.
- 31. Suvarna C, K Chaitanya N, Ameer S, Mannava H, Bontala P, Alyami J, *et al.* A comparative evaluation on the effect of oral zinc 50 mg with or without 0.1% triamcinolone orabase on oral lichen planus. *Int J Appl Basic Med Res.* 2020;**10(1)**:54-8. https://www.ijabmr.org/article.asp?issn=222
  - 516X;year=2020;volume=10;issue=1;spage =54;epage=58;aulast=Suvarna
- 32. Greenberg MS, Glick M. Burket's Oral Medicine: Diagnosis and Treatment, 10th ed. New York: BC Decker Inc. 2003:74, 5, 107, 11, 310.

- 33. Edgar NR, Saleh D, Miller RA. Recurrent Aphthous Stomatitis: A Review. *J Clin Aesthet Dermatol*. 2017;**10**(3):26-36. https://pubmed.ncbi.nlm.nih.gov/28360966 https://www.ncbi.nlm.nih.gov/pmc/articles/P MC5367879/
- 34. Paus R, Olsen EA, Messenger AG. Hair growth disorders. In: Wolff K, Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffell DJ. Eds.). Fitzpatrick's Dermatology in General Medicine 7th ed. New York, Mc Graw Hill Book Company. 2008;86:753-77.
- 35. Mancuso G, Balducci A, Casadio C, Farina P, Staffa M, Valenti L, *et al*. Efficacy of betamethasone valerate foam formulation in comparison with betamethasone dipropionate lotion in the treatment of mild-to-moderate alopecia areata: a multicenter, prospective, randomized, controlled, investigator-blinded trial. *Int J Dermatol*. 2003;42(7):572-5.
- 36. Nakajima T, Inui S, Itami S. Pulse corticosteroid therapy for alopecia areata: study of 139 patients. *Dermatology*. 2007:**215(4)**:320-4.
- 37. Sharquie KE, Al-Jaralla FA, Sharquie IK. Intralesional Injection of Hyaluronic Acid as a Long-Lasting Therapy of Morphea Sclerosis. *Am J Dermatol Venereol*. 2019;**8**(3):45-8.
- 38. Brocard A, Quereux G, Moyse D, Dreno B. Localized scleroderma and zinc: a pilot study. *Eur J Dermatol*. 2010;**20**(2):172-4.
- 39. Sharquie KE, Noaimi AA, Abdulqader ET, Aljanabi WK. Clinical and Histopathological Evaluation of Pigmented Morphea with New Insight in Relation to Etiopathogenesis of the Disease. *Am J Dermatol Venereol*. 2020;**9(2**):21-6.
- 40. Wang F, Adam BA. Zinc in the treatment of chronic leg ulcers of systemic lupus

- erythematosus. *Singapore Med J.* 1982; **24(2)**:171-3.
- 41. Gaby AR. Natural remedies for scleroderma. *Altern Med Rev.* 2006;**11**(3):188-95.
- 42. Svenson KL, Hällgren R, Johansson E, Lindh U. Reduced zinc in peripheral blood cells from patients with inflammatory connective tissue diseases. *Inflammation*. 1985;**9(2)**:189-99.
- 43. Keiser HR, Henkin RI, Bartter FC, Sjoerdsma A. Loss of Taste During Therapy With Penicillamine. *JAMA*. 1968;**203**(6): 381-3. https://doi.org/10.1001/jama.1968.03140060 005002
- Sharquie KE. Iraqi society of dermatology activities. https://www.imcas.com/en/attend/imcasworld-congress-2019.
- 45. Sharquie KE. Pearls in skin surgery and cosmetology 2019 28<sup>th</sup>. EADV Madrid.eadvprogram.manage.com en-GB.
- Powell SR. The antioxidant properties of zinc. J Nutr. 2000;130(5S Suppl):1447S-54S
- 47. Mahajan PM, Jadhav VH, Patki AH, Jogaikar DG, Mehta JM. Oral zinc therapy in recurrent erythema nodosum leprosum: a clinical study. *Indian J Lepr.* 1994;**66(1)**:51-7
- 48. Lutz G, Kreysel HW. Selective changes in lymphocytic differentiation antigens in the peripheral blood of patients with alopecia areata treated with oral zinc. *Z Hautkr*. 1990;65(2):132-4.
- 49. Sharquie KE. Intralesional therapy of cutaneous leishmaniasis with 2% zinc sulfate solution. *J Pan Arab League Dermatol*. 1996;7:41-6. https://ci.nii.ac.jp/naid/10016267561/en/